• Hi Guest: Welcome to TRIBE, the online home of TRIBE MAGAZINE. If you'd like to post here, or reply to existing posts on TRIBE, you first have to register. Join us!

the cool nerd facts thread


TRIBE Member
post here interesting science facts and discoveries, and other shit that some of the board nerds might enjoy

Here's my contribution (couldn't think of anything better now - this is from Discover magazine)

Because a black hole gobbles everything in its path, you'd think it would always get bigger. But in Octover 2001, European astronomers discovered a spinning black hole that's losing steam - it's tangled up in a magnetic field. That field slows the black hole's spin, which transfers the energy to a surrounding cloud of gas.

Cheap Ego

TRIBE Member
<font face="Verdana, Arial" size="2">Originally posted by t-boy:
post here interesting science facts and discoveries, and other shit that some of the board nerds might enjoy

Here's my contribution (couldn't think of anything better now - this is from Discover magazine)

Because a black hole gobbles everything in its path, you'd think it would always get bigger. But in Octover 2001, European astronomers discovered a spinning black hole that's losing steam - it's tangled up in a magnetic field. That field slows the black hole's spin, which transfers the energy to a surrounding cloud of gas.

So, what happens when the black hole stops twirling? Does it spit everything back out, kinda like after a night of partying?


TRIBE Member
awwww..thats not gonna come down for days!!! curse the man who invented helium! curse Peter de Cezar!


TRIBE Member
we all know that travelling at or near the speed of light is a dificult task, specially in order to make controlled voyages through time.

Basically, the closer we travel at the speed of light, the slower time travels, so if we make a full circle at said speed and return to earth, we'll have lived a shorter time than those on earth, hence we'll have travelled forward in time.

Now this is just fine and dandy, until you start packing your ship and there's no more room for rations. So why not take the easyer approach?

Due to the powerful suction of a blackhole, everything, including matter, light, space and therefore time get's sucked into it's centre. Time accelerates as it nears the centre of the blackhole. Now the event horizon, is the basically the point of no return of a black hole. That point where there's no way for escape because the suction is too strong.

By hopping into a spaceship and positioning yourself near the event horizon (a place in space where everything travels faster than normal, including time) one has the ability to travel not back, but slower in time.

Due to the fact that your time is rapidly increasing, and say earthtime stay's it's steadyself, altho ticking away SLOWER than yours, when you return to earth, you should have aged far more than your earthly companions.

err... i think that's right... it's all from memory.. i hope it's right.. i dont wanna have to take out my books.

Subscribe to Cannabis Goldsmith, wherever you get your podcasts


TRIBE Member
<font face="Verdana, Arial" size="2">In 1950 Jan Oort noticed that
no comet has been observed with an orbit that indicates that it came from interstellar space,
there is a strong tendency for aphelia of long period comet orbits to lie at a distance of about 50,000 AU, and
there is no preferential direction from which comets come.
From this he proposed that comets reside in a vast cloud at the outer reaches of the solar system. This has come to be known as the Oort Cloud. The statistics imply that it may contain as many as a trillion (1e12) comets. Unfortunately, since the individual comets are so small and at such large distances, we have no direct evidence about the Oort Cloud.

The Oort Cloud may account for a significant fraction of the mass of the solar system, perhaps as much or even more than Jupiter. (This is highly speculative, however; we don't know how many comets there are out there nor how big they are.)

The Kuiper Belt is a disk-shaped region past the orbit of Neptune roughly 30 to 100 AU from the Sun containing many small icy bodies. It is now considered to be the source of the short-period comets.

Occasionally the orbit of a Kuiper Belt object will be disturbed by the interactions of the giant planets in such a way as to cause the object to cross the orbit of Neptune. It will then very likely have a close encounter with Neptune sending it out of the solar system or into an orbit crossing those of the other giant planets or even into the inner solar system.

There are presently nine known objects orbiting between Jupiter and Neptune (including 2060 Chiron (aka 95 P/Chiron) and 5145 Pholus; see the MPC's list). The IAU has designated this class of objects as Centaurs. These orbits are not stable. These objects are almost certainly "refugees" from the Kuiper Belt. Their future fate is not known. Some of these show some cometary activity (ie, their images are a little fuzzy indicating the presence of a diffuse coma). The largest of these is Chiron which is about 170 km in diameter, 20 times larger than Halley. If it ever is perturbed into an orbit that approaches the Sun it will be a truly spectacular comet.

Curiously, it seems that the Oort Cloud objects were formed closer to the Sun than the Kuiper Belt objects. Small objects formed near the giant planets would have been ejected from the solar system by gravitational encounters. Those that didn't escape entirely formed the distant Oort Cloud. Small objects formed farther out had no such interactions and remained as the Kuiper Belt objects.

Several Kuiper Belt objects have been discovered recently including 1992 QB1 and 1993 SC (above). They appear to be small icy bodies similar to Pluto and Triton (but smaller). There are more than 300 known trans-Neptunian objects (as of mid 2000); see the MPC's list. Many orbit in 3:2 resonance with Neptune (as does Pluto). Color measurements of some of the brightest have shown that they are unusually red.

It is estimated that there are at least 35,000 Kuiper Belt objects greater than 100 km in diameter, which is several hundred times the number (and mass) of similar sized objects in the main asteroid belt.

A team of astronomers led by Anita Cochran report that the Hubble Space Telescope has detected extremely faint Kuiper Belt objects (left). The objects are very small and faint perhaps only 20 km or so across. There may be as many as 100 million such comets in low-inclination orbits and shining brighter than the HST's magnitude-28 limit. (A follow-up HST observation failed to confirm this observation, however.)

Spectra and photometric data have been obtained for 5145 Pholus. Its albedo is very low (less than 0.1). Its spectra indicates the presence of organic compounds, which are often very dark (e.g. the nucleus of Comet Halley).

Some astronomers believe that Triton, Pluto and its moon Charon are merely the largest examples of Kuiper Belt objects. (But even if this is true, it will not affect Pluto's official designation as a "major planet" for historical reasons.)

But these are more than distant curiosities. They are almost certainly pristine remnants of the nebula from which the entire solar system was formed. Their composition and distribution places important constraints on models of the early evolution of the solar system. </font>

not only that but the kuiper belt represents a vast store of organic compounds and other useful substances that would be extremely important in making the step from solar system to interstellar space.

new kuiper belt objects are being found all the time.

the pluto-charon system is probably a good example of what KBOs are (though they are technically trans-neptunian objects - pluto-charon sometimes orbits within neptune's orbit making the blue giant the furthest planet from the sun). neptune's moon triton orbits retrogade, suggesting that it is a relatively recent acquisition.

size comparison:


KBOs are normally observed by looking at spaces that represent orbital resonances with the major planets.


TRIBE Member
<font face="Verdana, Arial" size="2">Originally posted by SUNKIST:
awwww..thats not gonna come down for days!!! curse the man who invented helium! curse Peter de Cezar!</font>

pierre jules cesar janssen


TRIBE Member
<font face="Verdana, Arial" size="2">Triton's orbit is retrograde. It is the only large moon to orbit "backwards", the only other moons with retrograde orbits are Jupiter's moons Ananke, Carme, Pasiphae and Sinope and Saturn's Phoebe all of which are less than 1/10 the diameter of Triton. Triton could not have condensed from the primordial Solar Nebula in this configuration; it must have formed elsewhere (perhaps in the Kuiper Belt?) and later been captured by Neptune (perhaps involving a collision with another now shattered Neptunian moon). A capture scenario could account not only for Triton's orbit but also for the unusual orbit of Nereid and provide the energy needed to melt and differentiate Triton's interior.

Because of its retrograde orbit, tidal interactions between Neptune and Triton remove energy from Triton thus lowering its orbit. At some very distant future time it will either break up (perhaps forming a ring) or crash into Neptune.

The unusual nature of Triton's orbit, the similarity of bulk properties between Pluto and Triton, and the highly eccentric, Neptune-crossing nature of Pluto's orbit suggest some historical connection between them. Exactly what this might be is purely conjecture at this time however.

Triton's axis of rotation is also unusual, tilted 157 degrees with respect to Neptune's axis (which is in turn inclined 30 degrees from the plane of Neptune's orbit). This adds up to an orientation with respect to the Sun somewhat like Uranus's with polar and equatorial regions alternately pointing toward the Sun. This probably results in radical seasonal changes as one pole then the other moves into the sunlight. During the Voyager 2 encounter, Triton's south pole was facing the Sun. </font>


<font face="Verdana, Arial" size="2">After the discovery of Pluto in 1930, many astronomers became intrigued by the possibility of finding a 10th planet circling the sun. Cloaked by the vast distances of interplanetary space, the mysterious "Planet X" might have remained hidden from even the best telescopic sight, or so these scientists reasoned. Yet decades passed without detection, and most researchers began to accept that the solar system was restricted to the familiar set of nine planets.

But many scientists began seriously rethinking their notions of the solar system in 1992, when we identified a small celestial body -just a few hundred kilometers across-sited farther from the sun than any of the known planets. Since that time, we have identified nearly three dozen such objects circling through the outer solar system. A host of similar objects is likely to be traveling with them, making up the so-called Kuiper belt), a region named for Dutch-American astronomer Gerard P. Kuiper, who, in 1951, championed the idea that the solar system contains this distant family.

What led Kuiper, nearly half a century ago, to believe the disk of the solar system was populated with numerous small bodies orbiting at great distances from the sun? His conviction grew from a fundamental knowledge of the behavior of certain comets-masses of ice and rock that on a regular schedule plunge from the outer reaches of the solar system inward toward the sun. Many of these comparatively small objects periodically provide spectacular appearances when the sun's rays warm them enough to drive dust and gas off their surfaces into luminous halos (creating large "comae") and elongate tails.

Astronomers have long realized that such active comets must be relatively new members of the inner solar system. A body such as Halley's comet, which swings into view every 76 years, loses about one ten-thousandth of its mass on each visit near the sun. That comet will survive for only about 10,000 orbits, lasting perhaps half a million years in all. Such comets were created during the formation of the solar system 4.5 billion years ago and should have completely lost their volatile constituents by now, leaving behind either inactive, rocky nuclei or diffuse streams of dust. Why then are so many comets still around--including the latest cosmic spectacle, Comet Hyakutake-- to dazzle onlookers with their displays?

Guiding Lights

The comets that are currently active formed in the earliest days of the solar system, but they have since been stored in an inactive state-most of them preserved within a celestial deep freeze called the Oort cloud. The Dutch astronomer Jan H. Oort proposed the existence of this sphere of cometary material in 1950. He believed that this cloud had a diameter of about 100,000 astronomical units (AU-a distance defined as the average separation between Earth and the sun, about 150 million kilometers) and that it contained several hundred billion individual comets. In Oort's conception, the random gravitational jostling of stars passing nearby knocks some of the outer comets in the cloud from their stable orbits and gradually deflects their paths to dip toward the sun.

For most of the past half a century, Oort's hypothesis neatly explained the size and orientation of the trajectories that the so-called long-period comets (those that take more than 200 years to circle the sun) follow. Astronomers find that those bodies fall into the planetary region from random directions-as would be expected for comets originating in a spherical repository like the Oort cloud. In contrast, Oort's hypothesis could not explain short-period comets that normally occupy smaller orbits tilted only slightly from the orbital plane of Earth-a plane that astronomers call the ecliptic. [Resources for learning more about comets are available through the Internet.]

Most astronomers believed that the short-period comets originally traveled in immense, randomly oriented orbits (as the long-period comets do today) but that they were diverted by the gravity of the planets-primarily Jupiter-into their current orbital configuration. Yet not all scientists subscribed to this idea. As early as 1949, Kenneth Essex Edgeworth, an Irish gentleman-scientist (who was not affiliated with any research institution) wrote a scholarly article suggesting that there could be a flat ring of comets in the outer solar system. In his 1951 paper, Kuiper also discussed such a belt of comets, but he did not refer to Edgeworth's previous work.

Kuiper and others reasoned that the disk of the solar system should not end abruptly at Neptune or Pluto (which vie with each other for the distinction of being the planet most distant from the sun). He envisioned instead a belt beyond Neptune and Pluto consisting of residual material left over from the formation of the planets. The density of matter in this outer region would be so low that large planets could not have accreted there, but smaller objects, perhaps of asteroidal dimensions, might exist. Because these scattered remnants of primordial material were so far from the sun, they would maintain low surface temperatures. It thus seemed likely that these distant objects would be composed of water ice and various frozen gases-making them quite similar (if not identical) to the nuclei of comets.

Kuiper's hypothesis languished until the 1970s, when Paul C. Joss of the Massachusetts Institute of Technology began to question whether Jupiter's gravity could in fact efficiently transform long-period comets into short-period ones. He noted that the probability of gravitational capture was so small that the large number of short-period comets that now exists simply did not make sense. Other researchers were, however, unable to confirm this result, and the Oort cloud remained the accepted source of the comets, long and short period alike.

But Joss had sown a seed of doubt, and eventually other astronomers started to question the accepted view. In 1980 Julio A. Fern‡ndez (then at the Max Planck Institute for Aeronomy in Katlenburg-Lindau) had, for example, done calculations that suggested that short-period comets could come from Kuiper's proposed trans-Neptunian source. In 1988 Martin J. Duncan of the University of Toronto, Thomas Quinn and Scott D. Tremaine (both at the Canadian Institute for Theoretical Astrophysics) used computer simulations to investigate how the giant gaseous planets could capture comets. Like Joss, they found that the process worked rather poorly, raising doubts about the veracity of this well-established concept for the origin of short-period comets. Indeed, their studies sounded a new alarm because they noted that the few comets that could be drawn from the Oort cloud by the gravitational tug of the major planets should be traveling in a spherical swarm, whereas the orbits of the short-period comets tend to lie in planes close to the ecliptic.

Duncan, Quinn and Tremaine reasoned that short-period comets must have been captured from original orbits that were canted only slightly from the ecliptic, perhaps from a flattened belt of comets in the outer solar system. But their so-called Kuiper belt hypothesis was not beyond question. In order to make their calculations tractable, they had exaggerated the masses of the outer planets as much as 40 times (thereby increasing the amount of gravitational attraction and speeding up the orbital evolution they desired to examine). Other astrophysicists wondered whether this computational sleight of hand might have led to an incorrect conclusion.

Why Not Just Look?

Even before Duncan, Quinn and Tremaine published their work, we wondered whether the outer solar system was truly empty or instead full of small, unseen bodies. In 1987 we began a telescopic survey intended to address exactly that question. Our plan was to look for any objects that might be present in the outer solar system using the meager amount of sunlight that would be reflected back from such great distances. Although our initial efforts employed photographic plates, we soon decided that a more promising approach was to use an electronic detector (a charge-coupled device, or CCD) attached to one of the larger telescopes.

We conducted the bulk of our survey using the University of Hawaii's 2.2-meter telescope on Mauna Kea. Our strategy was to use a CCD array with this instrument to take four sequential, 15-minute exposures of a particular segment of the sky. We then enlisted a computer to display the images in the sequence in quick succession-a process astronomers call "blinking." An object that shifts slightly in the image against the background of stars (which appear fixed) will reveal itself as a member of the solar system.

For five years, we continued the search with only negative results. But the technology available to us was improving so rapidly that it was easy to maintain enthusiasm (if not funds) in the continuing hunt for our elusive quarry. On August 30, 1992, we were taking the third of a four-exposure sequence while blinking the first two images on a computer. We noticed that the position of one faint "star" appeared to move slightly between the successive frames. We both fell silent. The motion was quite subtle, but it seemed definite. When we compared the first two images with the third, we realized that we had indeed found something out of the ordinary. Its slow motion across the sky indicated that the newly discovered object could be traveling beyond even the outer reaches of Pluto's distant orbit. Still, we were suspicious that the mysterious object might be a near-Earth asteroid moving in parallel with Earth (which might also cause a slow apparent motion). But further measurements ruled out that possibility.

We observed the curious body again on the next two nights and obtained accurate measurements of its position, brightness and color. We then communicated these data to Brian G. Marsden, director of the International Astronomical Union's Central Bureau of Astronomical Telegrams at the Smithsonian Astrophysical Observatory in Cambridge, Mass. His calculations indicated that the object we had discovered was indeed orbiting the sun at a vast distance (40 AU)-only slightly less remote than we had first supposed. He assigned the newly discovered body a formal, if somewhat drab, name based on the date of discovery: he christened it "1992 QB1." (We preferred to call it "Smiley," after John Le CarrŽ's fictional spy, but that name did not take hold within the conservative astronomical community.)

Our observations showed that QB1 reflects light that is quite rich in red hues compared with the sunlight that illuminates it. This odd coloring matched only one other object in the solar system-a peculiar asteroid or comet called 5145 Pholus. Planetary astronomers attribute the red color of 5145 Pholus to the presence of dark, carbon-rich material on its surface. The similarity between QB1 and 5145 Pholus thus heightened our excitement during the first days after the discovery. Perhaps the object we had just located was coated by some kind of red material abundant in organic compounds. How big was this ruddy new world? From our first series of measurements, we estimated that QB1 was between 200 and 250 kilometers across-about 15 times the size of the nucleus of Halley's comet.

Some astronomers initially doubted whether our discovery of QB1 truly signified the existence of a population of objects in the outer solar system, as Kuiper and others had hypothesized. But such questioning began to fade when we found a second body in March 1993. This object is as far from the sun as QB1 but is located on the opposite side of the solar system. During the past three years, several other research groups have joined the effort, and a steady stream of discoveries--including some confirming observations from the Hubble Space Telescope--has ensued. The current count of trans-Neptunian, Kuiper belt objects is 32.

The known members of the Kuiper belt share a number of characteristics. They are, for example, all located beyond the orbit of Neptune, suggesting that the inner edge of the belt may be defined by this planet. All these newly found celestial bodies travel in orbits that are only slightly tilted from the ecliptic-an observation consistent with the existence of a flat belt of comets. Each of the Kuiper belt objects is millions of times fainter than can be seen with the naked eye. The 32 objects range in diameter from 100 to 400 kilometers, making them considerably smaller than both Pluto (which is about 2,300 kilometers wide) and its satellite, Charon, (which measures about 1,100 kilometers across).

The current sampling is still quite modest, but the number of new solar system bodies found so far is sufficient to establish beyond doubt the existence of the Kuiper belt. It is also clear that the belt's total population must be substantial. We estimate that the Kuiper belt contains at least 35,000 objects larger than 100 kilometers in diameter. Hence, the Kuiper belt probably has a total mass that is hundreds of times larger than the well-known asteroid belt between the orbits of Mars and Jupiter.

Cold Storage for Comets

The Kuiper belt may be rich in material, but can it in fact serve as the supply source for the rapidly consumed short-period comets? Matthew J. Holman and Jack L. Wisdom, both then at M.I.T., addressed this problem using computer simulations. They showed that within a span of 100,000 years the gravitational influence of the giant gaseous planets (Jupiter, Saturn, Uranus and Neptune) ejects comets orbiting in their vicinity, sending them out to the farthest reaches of the solar system. But a substantial percentage of trans-Neptunian comets can escape this fate and remain in the belt even after 4.5 billion years. Hence, Kuiper belt objects located more than 40 AU from the sun are likely to have held in stable orbits since the formation of the solar system.

Astronomers also believe there has been sufficient mass in the Kuiper belt to supply all the short-period comets that have ever been formed. So the Kuiper belt seems to be a good candidate for a cometary storehouse. And the mechanics of the transfer out of storage is now well understood. Computer simulations have shown that Neptune's gravity slowly erodes the inner edge of the Kuiper belt (the region within 40 AU of the sun), launching objects from that zone into the inner solar system. Ultimately, many of these small bodies slowly burn up as comets. Some-such as Comet Shoemaker-Levy 9, which collided with Jupiter in July 1994-may end their lives suddenly by striking a planet (or perhaps the sun). Others will be caught in a gravitational slingshot that ejects them into the far reaches of interstellar space.

If the Kuiper belt is the source of short-period comets, another obvious question emerges: Are any comets now on their way from the Kuiper belt into the inner solar system? The answer may lie in the Centaurs, a group of objects that includes the extremely red 5145 Pholus. Centaurs travel in huge planet-crossing orbits that are fundamentally unstable. They can remain among the giant planets for only a few million years before gravitational interactions either send them out of the solar system or transfer them into tighter orbits.

With orbital lifetimes that are far shorter than the age of the solar system, the Centaurs could not have formed where they currently are found. Yet the nature of their orbits makes it practically impossible to deduce their place of origin with certainty. Nevertheless, the nearest (and most likely) reservoir is the Kuiper belt. The Centaurs may thus be "transition comets," former Kuiper belt objects heading toward short but showy lives within the inner solar system. The strongest evidence supporting this hypothesis comes from one particular Centaur-2060 Chiron. Although its discoverers first thought it was just an unusual asteroid, 2060 Chiron is now firmly established as an active comet with a weak but persistent coma.

As astronomers continue to study the Kuiper belt, some have started to wonder whether this reservoir might have yielded more than just comets. Is it coincidence that Pluto, its satellite, Charon, and the Neptunian satellite Triton lie in the vicinity of the Kuiper belt? This question stems from the realization that Pluto, Charon and Triton share similarities in their own basic properties but differ drastically from their neighbors. The Hubble Space Telescope has recently produced the first direct images of Pluto and Charon.

A Peculiar Trio

The densities of both Pluto and Triton, for instance, are much higher than any of the giant gaseous planets of the outer solar system. The orbital motions of these bodies are also quite strange. Triton revolves around Neptune in the "retrograde" direction-opposite to the orbital direction of all planets and most satellites. Pluto's orbit slants highly from the ecliptic, and it is so far from circular that it actually crosses the orbit of Neptune. Pluto is, however, protected from possible collision with the larger planet by a special orbital relationship known as a 3:2 mean-motion resonance. Simply put, for every three orbits of Neptune around the sun, Pluto completes two.

The pieces of the celestial puzzle may fit together if one postulates that Pluto, Charon and Triton are the last survivors of a once much larger set of similarly sized objects. S. Alan Stern of the Southwest Research Institute in Boulder first suggested this idea in 1991. These three bodies may have been swept up by Neptune, which captured Triton and locked Pluto-perhaps with Charon in tow-into its present orbital resonance.

Interestingly, orbital resonances appear to influence the position of many Kuiper belt objects as well. Up to one half of the newly discovered bodies have the same 3:2 mean-motion resonance as Pluto and, like that planet, may orbit serenely for billions of years. (The resonance prevents Neptune from approaching too closely and disturbing the orbit of the smaller body.) We have dubbed such Kuiper belt objects Plutinos -"little Plutos." Judging from the small part of the sky we have examined, we estimate that there must be several thousand Plutinos larger than 100 kilometers across.

The recent discoveries of objects in the Kuiper belt provide a new perspective on the outer solar system. Pluto now appears special only because it is larger than any other member of the Kuiper belt. One might even question whether Pluto deserves the status of a full-fledged planet. Strangely, a line of research that began with attempts to find a 10th planet may, in a sense, have succeeded in reducing the final count to eight. This irony, along with the many intriguing observations we have made of Kuiper belt objects, reminds us that our solar system contains countless surprises.


Further Reading

The Origin of Short Period Comets. Martin Duncan, Thomas Quinn and Scott Tremaine in Astrophysical Journal, Vol. 328, pages L69-L73; May 15, 1988.

The Kuiper Belt Objects. J. X. Luu in Asteroids, Comets, Meteors 1993. Edited by A. Milani, M. Di Martino and A. Cellino. Kluwer Academic Publishers, 1993.

The Solar System beyond Neptune. D. C. Jewitt and J. X. Luu in Astronomical Journal, Vol. 109, No. 4, pages 1867-1876; April 1995.

The Origin of Pluto's Orbit: Implications for the Solar System beyond Neptune. Renu Malhotra in Astronomical Journal, Vol. 110, pages 420-429; July 1995.




The earth has seasons because of the tilt of the earth. The seasons are most pronounced at the polar regions because the north and south pole get very low and very high angle sunlight at the solstices.

During winter solstice in the northern hemisphere, the north pole is at its furthest from the sun and the south at its closest. That means that up here in Canada, we get lower angle sunrays and less time in the sun, making it colder. In the summer, the earth spins on an axis where the north pole is tilted toward the sun, making the days long, and the angle of sun penetration near perpendicular, so less rays reflect into the atmosphere, and more are absorbed.

The equatorial region always gets nearly direct sunlight, at a near-perpendicular angle, which warms it all the time.

I just say this, cuz it seems many people think the seasons are caused by the distance between the sun and the earth. We're in an eliptical orbit that is not in synch with the seasons, making that claim impossible. Also, it wouldn't explain different seasonal temperatures on earth during any one time.

I'm such a geek. This thread had my name all over it.
And this is how I enjoy spending my lunch. Oh. My. God.
Subscribe to Cannabis Goldsmith, wherever you get your podcasts

Sporty Dan

TRIBE Member
<font face="Verdana, Arial" size="2">Originally posted by t-boy:
Because a black hole gobbles everything in its path, you'd think it would always get bigger. But in Octover 2001, European astronomers discovered a spinning black hole that's losing steam - it's tangled up in a magnetic field. That field slows the black hole's spin, which transfers the energy to a surrounding cloud of gas.</font>

Nifty article disputing the existance of black holes, hypothesizing 'gravastars' instead, and suggesting that our entire universe might be contained within one.



TRIBE Member
The Philedelphia Project

If you have not read up on this I suggest you do..Very cool info on the first cloaking ships.


Klubmasta Will

TRIBE Member
not all nerds are science nerds:

- ewan mcgregor says 'attack of the clones' will be much better than 'the phantom menace'. fanboys everywhere simultaneously pee their respective pants.

- the script for star trek 10 is getting excellent reviews.

- the directors cut of 'lord of the rings' is coming out july 26 (tentatively) and will contain 45 minutes of additional footage.

- 'the matrix reloaded' is scheduled for march 2003 and 'the matrix revolutions' is scheduled for november 2003.

- spielberg and harrison ford have confirmed plans to start work on 'indiana jones 4' as soon as spielberg completes his current project (which is his next project after 'minority report' with tom cruise).

- 'dk 2 - the dark knight strikes back' - frank miller's sequel to 'the dark knight returns' (arguably the most respected comic book story of the last 2 decades) - is in stores now.
Subscribe to Cannabis Goldsmith, wherever you get your podcasts

Cheer Bear

TRIBE Member
Man, I can't wait for Indiana Jones. Harrison Ford is like 59, and he's still pretty hot.

Men get better with age. Mmmm Mmmmm.
Subscribe to Cannabis Goldsmith, wherever you get your podcasts


TRIBE Member
This is one of those things you get in the e-mail. I don't know how valid some of these are.

Wearing headphones for just an hour will

It is impossible to lick your elbow.
A crocodile can't stick it's tongue out.
A shrimp's heart is in their head.
People say "Bless you" when you sneeze because when you sneeze,your heart stops for a milli-second.
In a study of 200,000 ostriches over a period of 80 years, no one reported a single case where an ostrich buried its head in the sand (or attempted to do so - apart from Bones ).
It is physically impossible for pigs to look up into the sky.
A pregnant goldfish is called a twit.
Between 1937 and 1945 Heinz produced a version of Alphagetti Spaghetti especially for the German market that consisted solely of little pasta swastikas.
On average, a human being will have sex more than 3,000 times and spend two weeks kissing in their lifetime.
More than 50% of the people in the world have never made or received a telephone call.
Rats and horses can't vomit.
The ''sixth sick sheik's sixth sheep's sick'' is said to be the toughest tongue twister in the English language.
If you sneeze too hard, you can fracture a rib. If you try to suppress a sneeze, you can rupture a blood vessel in your head or neck and die. if you keep your eyes open by force, they will pop out.
Rats multiply so quickly that in 18 months, two rats could have over a million descendants.
Wearing headphones for just an hour will increase the bacteria in your ear by 700 times.
In every episode of Seinfeld there is a Superman somewhere.
The cigarette lighter was invented before the match.
Thirty-five percent of the people who use personal ads for dating are already married.
A duck's quack doesn't echo, and no one knows why.
23% of all photocopier faults worldwide are caused by people sitting on them and photocopying their buttocks.
In the course of an average lifetime you will, while sleeping, eat 70 assorted insects and 10 spiders.
Most lipstick contains fish scales.
Cat's urine glows under a black-light.
Like fingerprints, everyone's tongue print is different.


<font face="Verdana, Arial" size="2">Originally posted by Stan:
Science nerds and movie nerds are not necessarily mutually exclusive.</font>



TRIBE Member
go back to science/astronomy.. i have a long nite shift @ work... i need reading material!!


post something interesting!!
Subscribe to Cannabis Goldsmith, wherever you get your podcasts